Unsupervised and Transfer Learning under Uncertainty - From Object Detections to Scene Categorization

نویسندگان

  • Grégoire Mesnil
  • Salah Rifai
  • Antoine Bordes
  • Xavier Glorot
  • Yoshua Bengio
  • Pascal Vincent
چکیده

Classifying scenes (e.g. into “street”, “home” or “leisure”) is an important but complicated task nowadays, because images come with variability, ambiguity, and a wide range of illumination or scale conditions. Standard approaches build an intermediate representation of the global image and learn classifiers on it. Recently, it has been proposed to depict an image as an aggregation of its contained objects:the representation on which classifiers are trained is composed of many heterogeneous feature vectors derived from various object detectors. In this paper, we propose to study different approaches to efficiently combine the data extracted by these detectors. We use the features provided by Object-Bank (Li-Jia Li and Fei-Fei, 2010a) (177 different object detectors producing 252 attributes each), and show on several benchmarks for scene categorization that careful combinations, taking into account the structure of the data, allows to greatly improve over original results (from +5% to +11%) while drastically reducing the dimensionality of the representation by 97% (from

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Learning of Semantics of Object Detections for Scene Categorization

Classifying scenes (e.g. into “street”, “home” or “leisure”) is an important but complicated task nowadays, because images come with variability, ambiguity, and a wide range of illumination or scale conditions. Standard approaches build an intermediate representation of the global image and learn classifiers on it. Recently, it has been proposed to depict an image as an aggregation of its conta...

متن کامل

Scene in the Loop: Towards Adaptation-by-Tracking in RGB-D Data

This paper addresses the problem of adapting an existing object detector to the characteristics of the environment in an unsupervised manner. The technique aims to reject all the false positive detections by exploiting the information from the environment and from the tracking system. We follow the intuition that similar characteristics are shared among the objects that are present in the same ...

متن کامل

Combining where and what in change detection for unsupervised foreground learning in surveillance

Change detection is the most important task for video surveillance analytics such as foreground and anomaly detection. Current foreground detectors learn models from annotated images since the goal is to generate a robust foreground model able to detect changes in all possible scenarios. Unfortunately, manual labelling is very expensive. Most advanced supervised learning techniques based on gen...

متن کامل

Heterogeneous Transfer Learning for Image Clustering via the SocialWeb

In this paper, we present a new learning scenario, heterogeneous transfer learning, which improves learning performance when the data can be in different feature spaces and where no correspondence between data instances in these spaces is provided. In the past, we have classified Chinese text documents using English training data under the heterogeneous transfer learning framework. In this pape...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013